图1为微孔层采用不同碳粉载量的对电极性能的影响。除了碳粉载量外,制备电极的其它参数分别为:气体扩散层中微孔层中PTFE的质量分数为30%,催化剂层中Pt载量为0.3 mg/cm2,Nafion质量分数为25 wt.%。从图可以看出,随着碳粉质量分数的增加,电池的极化性能提高,当碳粉的载量为2mg/cm2时,电池极化性能最好;碳粉载量进一步增加时,电池的极化性能反而下降。可见碳粉的载量对电池的极化性能有较大的影响。这可能是由于碳粉载量过低时,微孔层变薄,部分催化剂渗透到碳纸孔隙中,降低了催化剂的利用率,从而导致电池性能下降;然而过高的碳粉载量会导致气体扩散层变厚,在一定程度上反而阻碍反应气体向催化剂层的扩散,影响反应生成的水及时排放,致使电极电阻增大。试验结果表明,碳粉载量约为2mg/cm2 时,电池极化性能最好。
图1 不同碳粉载量对电极性能的影响
气体扩散层的微孔层中PTFE与碳粉的质量百分比对电流密度的影响如图2所示,除PTFE与碳粉的质量百分比例外,制备电极的其它参数分别为:碳粉载量为2 mg/cm2,催化层中Pt载量为0.3mg/cm2,Nafion百分含量为25 wt.%。从图2可以看出,微孔层中PTFE与碳粉的质量比为7:3时电极电流密度较高。试验结果表明,随着扩散层中PTFE含量的增加,电极憎水能力增加,有利于反应气体扩散参与电化学反应,以及产物水及时排出。但由于PTFE为不导电物质,含量过高则会使电极内阻增加,电极性能下降。可见,气体扩散层中PTFE含量过低,电池反应生成的水不易有效排出,从而阻碍反应气体向催化剂层扩散参与电化学反应,导致电极性能下降。
图2 PTFE/碳粉的比例对极化性能的影响
2.2 催化层中Nafion质量分数的优化 图3为催化剂与Nafion的质量比对电流密度的影响。从图可以看出40%Pt/C与Nafion比例为3:1时,MEA的性能最佳,电流密度在600mA/cm2,输出电压达到0.68V [21]。而开路电压却基本不受催化剂与Nafion比例的影响,大约在0.96V左右。
由于PEMFC采用固体电解质,它的磺酸根固定在构成质子交换膜的树脂,不会浸入电极内,因此为确保反应在电极催化层内进行,必须在电极催化内建立离子通道。为此需在催化层内添加质子交换树脂,在催化层的由Pt电催化剂构成的网络内建立一个由树脂构建的H+传导系统。使用Nafion作为粘剂其主要功能是作为质子导体浸入催化层,从而可以有效地扩大电极反应地比表面积,以促进质子在催化层微孔的传递,同时能够提高铂的利用率,降低的载量。但是Nafion是亲水性的,且对电子绝缘,催化层中如质量分数过高时,部分或者大部分电催化剂被Nafion包裹,由于Nafion不传导电子,切断了电通道,这部分电催化剂不能催化氧的电化学还原或氢的电化学氧化反应,同时催化剂表面固体聚合物电解质在催化剂不变的条件下增厚,增大质子传递的阻力,也不利于反应气体的传输,使电极性能降低;当Nafion质量分数偏少时,不能形成良好的传导网络,也阻碍了电化学反应的进行;部分催化剂未能与Nafion接触,催化剂表面无质子通道,故这部分催化剂不能起作用,催化剂利用率低,电池性能差。所以Nafion质量分数有一个最佳值。从图可以看出,电池的性能随着Nafion质量分数的增加而提高,这是因为Nafion质量分数的增加可以改善其与Pt颗粒的接触,从而使催化层的质子传递阻力减小,提高反应过程中质子的传导。当40%Pt/C与Nafion的质量比为3:1时,电池的性能达到最最佳。当Nafion继续增加时,过多的Nafion包裹Pt催化剂,阻止了催化剂参加电化学反应,Pt的利用率降低,电池的性能变差。因此当40%Pt/C与Nafion的质量比为3:1时,电池的性能最好。
图3 40%Pt/C催化剂与Nafion的质量比对电流密度的影响
图4是不同催化剂与Nafion的质量比对循环伏安曲线的影响。在0~1.2V的扫描区间可以将其分为3个不同电化学区间[17]:0~0.35V对应氢的吸/脱附区域,0.35~0.60V对应双电层区域,0.60~1.20V对应高电位区域。当40%Pt/C:Nafion为3:1时,对应的氢吸/脱附区间的面积明显大于其它比例时的情况,表明前者对应的库仑电量高于后者;而库仑电量的增大说明氢的吸/脱附点的增多,这间接表明了Pt的活性点的增大,活性面积增多,Pt的利用率提高,MEA的性能较好。
催化层中加Nafion溶液,有利于质子和电子的传导,减少质子和电子传递时的阻力。但若添加过量的Nafion溶液,会使得部分Nafion包覆在Pt颗粒的表面,阻碍了Pt颗粒与反应气的充分接触,使得这部分Pt不能参与电化学反应,减小了活性中心,从而降低了Pt的利用率。由图4可明显看出,40%Pt/C: Nafion为3:1时,活性面积最大,Pt的利用率最高。结合图3发现相应的MEA的放电性能最高。
图4 不同催化剂与Nafion的质量比对循环伏安曲线的影响
图5是催化剂与Nafion质量比对MEA的EIS的影响。图5左边是高频区域,中间是中频区域,右边是低频区域[21]。通过等效电路[22]可以模拟出图5对应的阻抗值,结果如表1。由表可见,催化剂与Nafion的比例对电池的电阻大小有比较明显的影响。当40%Pt/C催化剂与Nafion的比例小于3:1时,电池的欧姆阻抗和电荷传递阻抗较大,电池性能较差;当此比例增加到3:1时,欧姆阻抗和电荷传递阻抗减小对应的电池性能提高;进一步提高催化剂与Nafion的比例,电池的欧姆阻抗和电荷传递阻抗反而又增加。由于催化层的内部结构由Pt/C团聚体构成,可能由于Nafion只能存在于大孔中并覆盖Pt/C团聚体。氧在催化层中经历扩散、溶解以及传递的过程,含Nafion较少的孔意味着催化活性点的质子少,氧的浓度低,因此,电极性能变差。随着Nafion质量分数的增加,氧的浓度和离子电导率增加,电极性能得到提高,但过多的Nafion也会增大质子传递阻力和增加电极电阻,这个结果和Kaufman [10]认为的一致。
表1 等效电路图分析结果
Pt/C与Nafion质量比
欧姆阻抗
R/Ω
电感
L/ H e-6
电荷传递阻抗R/Ω
3:2
0.038
1.32
0.036
3:1
0.034
1.43
0.015
6:1
0.040
1.57
0.018
9:1
0.035